Quality-Aware Millimeter-Wave Device-to-Device Multi-Hop Routing for 5G Cellular Networks

IEEE International Conference on Communications (ICC)
Sydney, Australia, June 2014

Joongheon (Joon) Kim and Andreas F. Molisch
Department of Electrical Engineering, University of Southern California
Introduction

• Millimeter (Mm-Wave) transmission has been actively studied for 5G cellular systems
 • Objective: Increasing capacity based on ultra-wide channel bandwidth
 • Thus, next generation phones will be equipped with mm-wave RF.

• Question
 If device-to-device (D2D) video streaming is performed over the mm-wave enabled phones, What kinds of algorithms are required?
 • Multi-hop routing mechanisms are required due to its propagation characteristics.

• Therefore,
 • A Quality-Aware Millimeter-Wave Multi-Hop Routing Algorithm is investigated.
Why Multi-Hop Routing is required for Mm-Wave D2D Communications?

Multi-Hop Routing is required in Mm-Wave D2D to combat non-line-of-sight (NLOS) situations.

Multi-Hop Routing is required in Mm-Wave D2D to enable long-distance transmission.
Objective Function

Maximize the sum of the qualities of all given flows

\[\sum_{s_k \in V_s} q_k(f_{s_k \rightarrow v}) \]

Summation of the Qualities of All Flows

Summation of the Qualities of All Flows

Two Types of Quality Functions

Linear Form

Nonlinear (Concave) Form
Quality-Aware Mm-Wave D2D Multi-Hop Routing

Constraint #1: Device Constraints

\[L_{v_i \rightarrow v_j} = \begin{cases} 1, & \text{if } v_i \text{ sends data to } v_j \\ 0, & \text{otherwise} \end{cases} \]

Each source \(s_k \) should send data to the one of the other nodes:

\[\sum_{s_k \neq v} L_{s_k \rightarrow v} = 1, \forall s_k \]

In intermediate nodes, if it receives data, it should transmit the data, and visa versa, i.e.,

\[\sum_{v_l \neq v_j} L_{v_l \rightarrow v_j} = \sum_{v_j \neq v_l} L_{v_j \rightarrow v_l} \]

Each destination \(d_k \) should receive data from the one of the other nodes:

\[\sum_{v \neq d_k} L_{v \rightarrow d_k} = 1, \forall d_k \]
Quality-Aware Mm-Wave D2D Multi-Hop Routing

Constraint #2: Relay Constraints

The number of incoming flows is limited by the number of receiver RF N_{RF}^{Rx} chains:

$$\sum_{v \neq r_k} L_{v \rightarrow r_k} \leq N_{RF}^{Rx}$$

The number of outgoing flows is limited by the number of transmitter RF N_{RF}^{Tx} chains:

$$\sum_{r_k \neq v} L_{r_k \rightarrow v} \leq N_{RF}^{Tx}$$
Quality-Aware Mm-Wave D2D Multi-Hop Routing

Constraint #3: Flow Constraints

The amounts of incoming traffic and outgoing traffic should be same:

In each device v_k, \[\sum_{v_i \neq v_j} f_{v_i \rightarrow v_j}^{s_k} = \sum_{v_j \neq v_l} f_{v_j \rightarrow v_l}^{s_k}, \forall s_k \]

In each relay r_j, \[\sum_{v_i \neq r_j} f_{v_i \rightarrow r_j}^{s_k} = \sum_{r_j \neq v_l} f_{r_j \rightarrow v_l}^{s_k}, \forall s_k \]
Limited by Link Capacity:

\[C(v_i, v_j) = B \cdot \log_2(1 + SNR) \]

\[\begin{align*}
P_{signal, dB} &= EIRP + G_{Rx} + L(d) \\
&= 47 \text{ dBm in 38GHz} \\
&= 25 \text{ dBm in relays, 13.3 dBm in phones} \\
&= \text{path loss model which is formulated as} \\
L(d) &= 20 \log_{10} \left(\frac{4\pi d_0}{\lambda} \right) + 10n \log_{10} \left(\frac{d}{d_0} \right) + X_\sigma \\
\text{where } d_0 &= 5 \text{m (unit distance), } \lambda \text{ is wavelength, } n \text{ is path-loss coefficient, } X_\sigma \text{ is a shadowing (Gaussian) random variables.}
\end{align*} \]

\[P_{noise, dB} = 10 \log_{10} (k_B T_e \cdot B) + F_N \]

- \(k_B T_e \): noise power spectral density (-174dBm/Hz)
- \(F_N \): Rx noise figure (set to 6 dB)
Maximize: \[\sum_{s_k \in V_s} q_k \left(f_{s_k \rightarrow v} \right) \]

Subject to

\[\sum_{s_k \neq v} L_{s_k \rightarrow v} = 1, \forall s_k \quad \sum_{v \neq d_k} L_{v \rightarrow d_k} = 1, \forall d_k \]

\[\sum_{v_j \neq v} L_{v_j \rightarrow v} = \sum_{v_j \neq v_l} L_{v_j \rightarrow v_l} \]

\[\sum_{v \neq r_k} L_{v \rightarrow r_k} \leq N_{RF}^{Rx} \quad \sum_{r_k \neq v} L_{r_k \rightarrow v} \leq N_{RF}^{Tx} \]

\[\sum_{v_j \neq v} f_{v_j \rightarrow v} = \sum_{v_j \neq v_l} f_{v_j \rightarrow v_l}, \forall s_k \]

\[\sum_{v_j \neq r_j} f_{v_j \rightarrow r_j} = \sum_{r_j \neq v_l} f_{r_j \rightarrow v_l}, \forall s_k \]

\[f_{v_i \rightarrow v_j} \leq C(v_i, v_j) \]

Even though max-min multi-hop flow routing is widely used for quality-aware applications, it cannot consider the differentiated quality functions of the given individual flows.

This formulation is mixed integer disciplined convex programming where the given integers are 0-1 binary (i.e., \(L_{v_i \rightarrow v_j} = \{0,1\} \)), i.e., branch-and-bound is widely used in literatures to obtain optimal solutions.
Parameters and Settings

- **Parameters**
 - Carrier frequency: 38 GHz
 - In 25 dBi Rx antenna (for relays),
 - n is 2.20 in LOS and 3.88 in NLOS
 - σ is 10.3 in LOS and 14.6 in NLOS
 - In 13.3 dBi Rx antenna (for phones),
 - n is 2.21 in LOS and 3.18 in NLOS
 - σ is 9.40 in LOS and 11.0 in NLOS

- **Settings**
 - 20 number of phones; 5 number of relays
 - Each relay has 4 Tx RF and 4 Rx RF
 - 4 sessions with various quality functions

DQC presents 33% better average throughput compared to max-min flow routing.

Performance Evaluation

- The proposed algorithm (*differentiated quality consideration (DQC)*) is compared with max-min scheme routing (*MmF*).
- Average throughput of DQC & MmF, i.e., $E[T_{DQC} | p_k]$ & $E[T_{MmF} | p_k]$ depending on link failure probability p_k.
Conclusions and Future Work

- We propose a millimeter-wave multi-hop routing protocol for 5G cellular systems:
 - Assisted by multi-antenna relays
 - Quality-Awareness is introduced
 - Differentiated quality metrics for individual flows are taken account (better performance than max-min routing)
 - 33% performance improvement compared to max-min flow routing

- Future research direction
 - Conducting further research for the other 5G frequency, i.e., 28 GHz, as well.
• For more questions, please email to joongheon.kim@usc.edu, molisch@usc.edu