Feasibility Study of Stochastic Streaming with 4K UHD Video Traces

International Conference on ICT Convergence (ICTC)
Jeju Island, Republic of Korea, October 2015.

Joongheon Kim, Intel Corporation, Santa Clara, CA, USA (Email: joongheon.kim@intel.com)
Eun-Seok Ryu, Gachon University, Republic of Korea (Email: esryu@gachon.ac.kr)
Introduction

- Cisco Visual Networking Index (VNI) says
 - The summation of all possible forms of video contents will constitute 80% to 90% of global data traffic by 2017, and the traffic from mobile and wireless portable devices will exceed the traffic from wired devices by 2016.

 → Efficient wireless video streaming algorithms are of the highest importance

- Based on this importance, stochastic streaming algorithms have been investigated
 - Aiming at the time-average quality maximization subject to video queue stability.
Introduction

- Related Work in Stochastic Video Streaming
 - [TON-2015]
 - Stochastic video streaming algorithms for device-to-device distributed computing systems are proposed.
 - Device-to-device stochastic video streaming with two types of schedulers (centralized vs. distributed) is discussed.
 - [TCOMM-2015]
 - Stochastic video streaming in small cell networks is proposed.

Introduction

• Related Work in Stochastic Video Streaming (Cont’d)
 • In the two research directions, they discuss about stochastic network optimization applications to adaptive video streaming (i.e., stochastic streaming) which maximizes time-average video streaming quality subject to queue/buffer stability.
 • If we transmit maximum quality video streams all the time, the streaming quality will be maximized whereas the queue/buffer within the transmitter will be overflowed.
 • On the other hand, if we transmit minimum quality video streams all the time, the queue/buffer will be stable whereas the streaming quality will be minimized.
 • Therefore, the proposed stochastic streaming adapts the quality of each video stream depending on current queue-backlog length.
Introduction

• Motivation and Novelty
 • In [TON-2015] and [TCOMM-2015], the used video traces are MPEG test sequences, however the test sequences are not used in current consumer electronics applications.

 • Therefore, this work evaluates the stochastic streaming algorithms with up-to-date 4K ultra-high-definition (UHD) video test sequences.

 • After observing the performance evaluation results with 4K UHD video traces, we can numerically identify how much the novel stochastic streaming algorithm is better than queue-independent non-adaptive video streaming algorithms.
Proposed Stochastic Video Streaming
Proposed Stochastic Video Streaming

Streaming Arrival Process: Placement of Streams

Streaming Departure Process: Transmission of Bits

Streaming Time Clock ($K=5$)

Transmission Time Clock

t_s

t

Video Streams

Stream 1 Stream 2 Stream 3

Storage
Proposed Stochastic Video Streaming

Controlling the Arrival Process of TX Queue using Drift-Plus-Penalty (DPP) Algorithms

In each time slot, choose quality mode \(q \)

\[
\begin{align*}
\max & \quad \lim_{t \to \infty} \frac{1}{t} \sum_{t_s=0}^{t-1} \mathbb{E} \left[\mathbb{P}(q(t_s), t_s) \right] \\
\text{subject to} & \quad \lim_{t \to \infty} \frac{1}{t} \sum_{t_s=0}^{t-1} \mathbb{E} \left[Q(q(t_s), t_s) \right] < \infty
\end{align*}
\]

Where

\[
\Phi(q(t_s), t_s) \triangleq \mathbb{P}(q(t_s), t_s) - V \cdot \mathbb{B}(q(t_s), t_s) \cdot Q(t)
\]

PSNR of current chunk with quality mode \(q \)
Bitrate of current chunk with quality mode \(q \)
Feasibility Study – Text Sequence Generation

<table>
<thead>
<tr>
<th>Category</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>3840-by-2048 (for 4K UHD video)</td>
</tr>
<tr>
<td>Frame rate</td>
<td>30 fps (30 frames per second)</td>
</tr>
<tr>
<td>Bit depth</td>
<td>8 bits</td>
</tr>
<tr>
<td>Test sequence name</td>
<td>Traffic (for video standard testing)</td>
</tr>
<tr>
<td>Profile name</td>
<td>Main</td>
</tr>
<tr>
<td>Intra period</td>
<td>32</td>
</tr>
<tr>
<td>GOP size</td>
<td>8</td>
</tr>
<tr>
<td>Four different video qualities with QP</td>
<td>22, 27, 32, 37</td>
</tr>
<tr>
<td>(quantization Parameters)</td>
<td></td>
</tr>
<tr>
<td>Encoder</td>
<td>HM ver. 15.0 (HEVC standard reference codes)</td>
</tr>
<tr>
<td>PC</td>
<td>Intel i7 CPU, Windows7 64bit OS</td>
</tr>
</tbody>
</table>
Feasibility Study – 4K UHD Video Traces

QP: 22

QP: 27

QP: 22

QP: 37
Feasibility Study – Simulation Results with Various K

Tight Streaming Time Clock (K=1)

Loose Streaming Time Clock (K=10)
Feasibility Study – Simulation Results

Stochastic Streaming with
• Higher Quality (PSNR)
• More Queue-Backlog

Stochastic Streaming with
• Lower Quality (PSNR)
• Less Queue-Backlog

Highest Quality (PSNR)

Lowest Quality (PSNR)
Conclusions

• Feasibility study results of stochastic streaming algorithms with 4K ultra-high-definition (UHD) video traces.

• The performance improvements with the stochastic video streaming algorithms were verified with traditional MPEG test sequences in previous work; however there were no research results with up-to-date 4K UHD video traces.

• Thus, this work
 • Verifies the performance of the stochastic streaming algorithms with 4K UHD video traces
 • Shows that the stochastic algorithms perform better than queue-independent algorithms.
Q&A